WORKING GROUP ON DATA INTEGRATION

The integration of geospatial data and statistics to compute SDG indicators: requirements and practices

UN-GGIM: EUROPE

UNITED NATIONS INITIATIVE ON GLOBAL GEOSPATIAL INFORMATION MANAGEMENT

Guidelines for SDG Indicator Calculation

Overarching Conclusions

11.2.1 Proportion of population that has convenient access to public transport

11.3.1 Land consumption rate to population growth rate

15.1.1 Forest area as a proportion of total land area

15.3.1 Proportion of land that is degraded over total land area

December 2021

UN-GGIM: Europe Working Group on Data Integration Guidelines for SDG Indicator Calculation

OVERARCHING CONCLUSIONS

PAN-EUROPEAN PRODUCTS MAKE IT POSSIBLE TO COMPUTE SDG INDICATORS	Pan-European geospatial datasets are a first step allowing for a detailed computation at EU level with a good degree of homogeneity and comparability of data for SDG indicators 11.3.1, 15.1.1 and 15.3.1
DATA SOURCES SERVE MORE THAN ONE SDG INDICATOR	Pan-European geospatial products capturing relevant dimensions on land monitoring can serve more than one SDG indictors - the Copernicus Imperviousness Layer (IMD) provides data both for SDG indicators 11.3.1 and 15.3.1
Administrative boundaries are core for comparable cross- country results	It is important to have updated authoritative geographies for the definition of local, regional, and national territorial boundaries. At the European level, EuroGeographics is working towards providing easy access to pan-European open data created using official map, geospatial and land information.
HARMONISED TERRITORIAL TYPOLOGIES GUARANTEE COMPARABILITY	The Degree of Urbanisation (DEGURBA) and the Functional Urban Areas (FUA) capture the urban dimension guarantying European/Global comparability for SDG indicators 11.2.1 and 11.3.1
AUTHORITATIVE DATA ON TRANSPORT NETWORKS IS CRUCIAL	Working towards having authoritative data on transport networks and public transport timetables or making EC shared services available for the use of MS is crucial to capture and measure accessibility as proposed for SDG indicator 11.2.1
STABILITY IS KEY FOR EO DERIVED PRODUCTS	Geospatial data sources evolve rapidly, and innovation and new products are relevant and necessary. Nevertheless, for statistical indicators continuity, periodicity and comparability of data sources is key to meet the standard criteria of statistical information production to guarantee a coherent process of SDG monitoring.
ACCOUNTING FOR BIAS SHOULD BE CONSIDERED WHEN DERIVING STATISTICS FROM EO	For statistical indicators resulting from earth observation classified data, accounting for bias should be considered. This point is particularly relevant to cope with statistical standards and as the level of territorial detail and segmentation of data increases.
COORDINATE SHARED KNOWLEDGE AND RESOURCES TO DEAL WITH EO	Dealing with EO based data presents increased levels of complexity in terms of data volume and machine data processing. At the European level, it is important to invest in shared knowledge and resources on processing workflows, coding, and data processing solutions, allowing the automatic or semi-automatic extraction of information from satellite images, as well on tools to derive statistics with quality measures.
NATIONAL DATA SOURCES CAN PROVIDE ADDITIONAL MEANINGFUL INSIGHTS	National data sources can complementarily provide other segmentations at national and sub-national level relevant for policy monitoring and spatial planning policies at the local level. For SDG indicator 15.1.1, national data sources can be used to depict data by types of forest to increase insight on forest monitoring.