Machine Learning for Earth and Climate Sciences

Gustau Camps-Valls Image Processing Laboratory Universitat de València

🖂 gustau.camps@uv.es

Earth science

Earth observation

Deep learning

PERSPECTIVE

Deep learning and process understanding for data-driven Earth system science

https://doi.org/10.1038/s41586-019-0912-1

Markus Reichstein^{1,2#}, Gustau Camps-Valls³, Bjorn Stevens⁴, Martin Jung¹, Joachim Denzler^{2,5}, Nuno Carvalhais^{1,6} & Prabhat⁷

Reichstein, Camps-Valls et al, Nature, 2019 Camps-Valls, Tuia, Xiang, Reichstein. Wiley & Sons book, 2021 Machine learning approaches are increasingly used to extract patterns and insights from the ever-increasing stream of geospatial data, but current approaches may not be optimal when system behaviour is dominated by spatial or temporal context. Here, rather than amending classical machine learning, we argue that these contextual cues should be used as part of deep learning (an approach that is able to extract spatio-temporal features automatically) to gain further process understanding of Earth system science problems, improving the predictive ability of seasonal forecasting and modelling of long-range spatial connections across multiple timescales, for example. The next step will be a hybrid modelling approach, coupling physical process models with the versatility of data-driven machine learning. EDITED BY GUSTAU CAMPS-VALLS • DEVIS TUIA XIAO XIANG ZHU • MARKUS REICHSTEIN

DEEP LEARNING FOR THE **EARTH SCIENCES**

A COMPREHENSIVE APPROACH TO REMOTE SENSING, CLIMATE SCIENCE AND GEOSCIENCES

WILEY

Prediction of crop yield from space

How is our coastline and ocean?

Some machine learning applications

One soil map https://map.onesoil.ai

Global wealth map http://penny.digitalglobe.com

Flood analyzer alglobe.com http://floods.wri.org

Disease mapping https://www.healthmap.org

Al opportunities

Neural networks for spatio-temporal classification

- Convolutional neural nets (CNN): hierarchical structure exploits spatial relations
- Long short-term memory (LSTM): recurrent network that accounts for memory/dynamics

"A Deep Network Approach to Multitemporal Cloud Detection" Tuia and Camps-Valls, IEEE IGARSS 2018, http://isp.uv.es/code/landmarks.html

Probabilistic and scalable classifiers

- Gaussian processes as an alternative to neural nets
- GPs allow a probabilistic treatment, confidence intervals, feature ranking, deep too!
- Gaussian processes start to be scalable ...

"Remote Sensing Image Classification With Large-Scale Variational Gaussian Processes," Morales, Molina and Camps-Valls, IEEE Trans. Geosc. Rem. Sens, 2018

Multitask learning

- Multiple inter-related outputs? Data from multiple sources?
- Learn to fuse heterogeneous information

"**Multitask Remote Sensing Data Classification**" Leiva and Camps-Valls, IEEE Trans. Geosc, Rem. Sens 2015

Spatio-temporal variable prediction

- **STA** is common place in climate informatics, neuroscience, video processing, NLP, ...
- **Current approaches:** CNN + LSTM, space-time Gaussian processes
- Novel approaches: distribution regression and variational deep GPs

 $P \mapsto \mu_k(\mathcal{P}) \to \mathcal{P} \mapsto [\mathbb{E}\phi_1(X), \dots, \mathbb{E}\phi_s(X)] \in \mathbb{R}^s \\ \langle \mu_k(\mathcal{P}), \mu_k(\mathcal{Q}) \rangle_{\mathcal{H}_k} = \mathbb{E}_{X \sim \mathcal{P}, Y \sim \mathcal{Q}} k(X, Y)$

"Nonlinear Distribution Regression for Remote Sensing Applications" Adsuara, Perez,Muñoz, Mateo, Piles, Camps-Valls, IEEE TGARS 2019

"A Survey on Gaussian Processes for Earth Observation Data Analysis" Camps-Valls et al. IEEE Geoscience and Remote Sensing Magazine 2016

"Deep Gaussian Processes for Retrieval of bio-geo-physical parameters", Svendsen, Ruescas and Camps-Valls, IEEE Trans. Geosc. Rem. Sens, 2019

14

Google Earth Engine

Potential risks and challenges

ML in Earth science rocks... <u>only</u> when some things happen!

- Strong spatial and temporal correlations
- Big data accessible
- Cheap computing resources available
- Fast scalable ML models available
- No expert knowledge needed
- High prediction accuracy is enough
- Understanding the system is not that relevant

Machine/deep learning challenges

- **Do Models respect Physics Laws? Physics-aware ML**
- What did the ML model learn? Explainable AI (XAI)
- **Do they get cause-effect relations? Causal discovery and inference**

The New Hork Times

Opinion

Eight (No, Nine!) Problems With Big Data

By Gary Marcus and Ernest Davis

nature International weekly journal of science											
Home	News & Comment	Research	Careers & Jobs	Current Issue	Archive	Audio &					
Archive	Volume 538	Issue 7623	News Feature	Article							

NATURE | NEWS FEATURE

Can we open the black box of AI?

Artificial intelligence is everywhere. But before scientists trust it, they first need t understand how machines learn.

Davide Castelvecchi

XΛ	
AA	

Methods	HSI	ANN	Mechansim		
CAM with global average pooling [41], [90]	×	√			
+ Grad-CAM [42] generalizes CAM, utilizing gradient	\checkmark	\checkmark			
+ Guided Grad-CAM and Feature Occlusion [67]	×	\checkmark			
+ Respond CAM 43	×	\checkmark			
+ Multi-layer CAM 91	×	\checkmark			
LRP (Layer-wise Relevance Propagation) [13], [52]	×	N.A.			
+ Image classifications. PASCAL VOC 2009 etc [44]	×	\checkmark			
+ Audio classification. AudioMNIST [46]	×	\checkmark	Decomposition		
+ LRP on DeepLight. fMRI data from Human Connectome Project [47]	×	\checkmark			
+ LRP on CNN and on BoW(bag of words)/SVM [48]	×	\checkmark		s	
+ LRP on compressed domain action recognition algorithm [49]	×	×		E.	
+ LRP on video deep learning, selective relevance method [51]	×	✓		Saliency	
+ BiLRP 50	×	\checkmark		19	
DeepLIFT [56]	×	\checkmark			2
Prediction Difference Analysis 57	×	\checkmark			
Slot Activation Vectors [40]	×	✓			p
PRM (Peak Response Mapping) 58	×	\checkmark			
LIME (Local Interpretable Model-agnostic Explanations) [14]		√			
+ MUSE with LIME [84]	\checkmark	\checkmark	Sensitivity		
+ Guidelinebased Additive eXplanation optimizes complexity, similar to LIME [92]	✓	✓	Sensitivity		Pic Pic
# Also listed elsewhere: [55], [68], [70], [93]	N.A.	N.A.			ta
Others. Also listed elsewhere: 94	N.A.	N.A.			Perceptive Interpretability
+ Direct output labels. Training NN via multiple instance learning [64]	×	\checkmark	Others		2
+ Image corruption and testing Region of Interest statistically [65]	×	\checkmark	Others		
+ Attention map with autofocus convolutional layer [66]	×	✓			
DeconvNet [71]	×	~			1
Inverting representation with natural image prior [72]	×	\checkmark	Inversion		
Inversion using CNN [73]	×	✓	Inversion		
Guided backpropagation [74], [90]	×	✓		S	
Activation maximization/optimization [37]	×	√		Signal	
+ Activation maximization on DBN (Deep Belief Network) [75]	×	\checkmark		<u>a</u>	
+ Activation maximization, multifaceted feature visualization [76]	×	\checkmark	Optimization		
Visualization via regularized optimization [77]	×	\checkmark			
Semantic dictionary [38]	×	\checkmark			
Decision trees	N.A.	N.A.			1
Propositional logic, rule-based [81]		×	Verbal		
Sparse decision list [82] Decision sets, rule sets [83], [84]		×			
		×			
Encoder-generator framework 85	×	\checkmark			
Filter Attribute Probability Density Function [86]	×	×			
MUSE (Model Understanding through Subspace Explanations) [84]	\checkmark	\checkmark			

"A Survey on Explainable Artificial Intelligence(XAI): towards Medical **XAI**", Tjoa 2019 "Advancing Deep Learning For Earth Sciences: From Hybrid Modeling To Interpretability", Camps-Valls, G. and

Reichstein, M. and Zhu, Z. and Tuia, D. IEEE IGARSS (2020)

Physics-aware ML

Data-model blendingJoint Gaussian processesDistribution regression

Surrogate modeling Gaussian processes Bayesian optimization

Learning to parameterize Variational inference Monte Carlo, Gibbs **Learning physics** Sparse regression Latent force models

PERSPECTIVE

https://doi.org/10.1038/s41586-019-0912-1

Deep learning and process understanding for data-driven Earth system science

Markus Reichstein^{1,2}*, Gustau Camps-Valls³, Bjorn Stevens⁴, Martin Jung¹, Joachim Denzler^{2,5}, Nuno Carvalhais^{1,6} & Prabhat⁷

Machine learning approaches are increasingly used to extract patterns and insights from the ever-increasing stream of geospatial data, but current approaches may not be optimal when system behaviour is dominated by spatial or temporal context. Here, rather than amending classical machine learning, we argue that these contextual cues should be used as part of deep learning (an approach that is able to extract spatio-temporal features automatically) to gain further process understanding of Earth system science problems, improving the predictive ability of seasonal forecasting and modelling of long-range spatial connections across multiple timescales, for example. The next step will be a hybrid modelling approach, coupling physical process models with the versatility of data-driven machine learning.

"Deep learning and process understanding for data-driven Earth System Science", Reichstein, Camps-Valls et al. Nature, 2019.

"Living in the Physics - Machine Learning Interplay for Earth Observation"

Camps-Valls et al. AAAI Fall Series 2020 Symposium on Physics-guided AI for Accelerating Scientific Discovery, 2020. arxiv.org/abs/2010.09031

Causality

PERSPECTIVE

COMMUNICATIONS

https://doi.org/10.1038/s41467-019-10105-3

Inferring causation from time series in Earth system sciences

OPEN

Jakob Runge ^{1,2}, Sebastian Bathiany^{3,4}, Erik Bollt⁵, Gustau Camps-Valls⁶, Dim Coumou^{7,8}, Ethan Devle⁹, Clark Glymour¹⁰, Marlene Kretschmer⁸, Miguel D. Mahecha ¹¹, Jordi Muñoz-Marí⁶, Egbert H. van Nes⁴, Jonas Peters¹², Rick Quax^{13,14}, Markus Reichstein¹¹, Marten Scheffer⁴, Bernhard Schölkopf¹⁵, Peter Spirtes¹⁰, George Sugihara⁹, Jie Sun ^{5,16}, Kun Zhang¹⁰ & Jakob Zscheischler () 17,18,19

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING

Causal Inference in Geoscience and Remote Sensing From Observational Data

Adrián Pérez-Suay[®], Member, IEEE, and Gustau Camps-Valls[®], Fellow, IEEE

this is of special relevance to better understand the earth's system and the complex interactions between the governing processes.

Abstract-Establishing causal relations between random vari- with societal, economical, and environmental challenges, such ables from observational data is perhaps the most important as climate change [2], [3]. There is an urgent need for tools challenge in today's science. In remote sensing and geosciences, that help us to observe and study the earth system. Nowadays, machine learning and signal processing play a crucial role in

d Structural causal models

"Inferring causation from time series with perspectives in Earth system sciences", Runge, Bathiany, Bollt, Camps-Valls, et al. Nat Comm., 2019 "Causal Inference in Geoscience and Remote Sensing from Observational Data," Pérez-Suay and Camps-Valls, IEEE Trans. Geosc. Rem. Sens, 2018 "CauseMe: An online system for benchmarking causal inference methods," Muñoz-Marí, Mateo, Runge, Camps-Valls. In preparation (2019), CauseMe: http://causeme.uv.es

t - 2

X

Ζ

ELLIS, ELISE and AIDA

ELLIS.eu

- ELLIS: European Laboratory for Learning and Intelligent Systems
- Distributed center of excellence in Al
- ELLIS goals and mandates:
 - Coordinates research, fosters collaborations with industry and users, promotes technology adoption, support PhD fellowships & postdoc visits/stays, organize focused workshops
- ELLIS legacy:
 - place Europe in the global map of top Al research and transfer to industry
 - Make Europe an international talent magnet, incubator of innovation, and ecosystem
- Largely multidisciplinary & organized in Research Programs:
 - Robotics, robustness, health, language processing, earth, etc.

https://ellis.eu

ELLIS.eu & ELISE-AI

elise European Network of Al Excellence Centres

- ELLIS is Largely multidisciplinary & organized in Research Programs:
 - Robotics, robustness, health, language processing, etc.
- "Machine learning for Earth and climate sciences" (Dir.: Gustau Camps & Markus Reichstein)
 - **<u>Goal</u>**: Model & understand the Earth with Machine Learning and Process Understanding
 - Spatio-temporal anomaly and extreme events detection, anticipation and attribution
 - Data-driven dynamic modelling and forecasting
 - Hybrid modeling: linking physics and machine learning models
 - Causal inference, Learning and explaining feature representations
 - Earth and Climate model emulation, generative modelling and data-model fusion
 - 20 ELLIS Fellow members, regular meetings/workshops, exchange students, teaching material
- Universitat de València is a core center in the ICT-48 project ELISE

https://www.elise-ai.eu/

AIDA - AI Doctoral Academy

- All ICT-48 networks (Al4Media, ELISE, HumanE-Al NET, TAILOR) + VISION consortium joined forces
- New joint instrument to support world-level AI education and research programme
- AIDA offers:
 - access to resources, knowledge & expertise for the latest developments and trends on Al research and innovation
 - operate as an umbrella organisation for AI PhD and Postdoc studies
 - support a new generation of alumni
 - enhance networking and collaboration among talented researchers
 - provide access to workshops/conferences, short courses, mobilities, training/job opportunities

https://www.i-aida.org/

Conclusions

Take-home message

- Al is a paradigm shift
 - Excel in classification, (change) detection, parameter retrieval
 - Automate & understand processes
- Challenges: interpretability + causal relations + physics consistency
- Future:
 - User-centric AI + trustworthiness + accountability
 - Holistic & interdisciplinary education

"Towards a Collective Agenda on AI for Earth Science Data Analysis" Tuia, Roscher, Wegner, Jacobs, Zhu, and Camps-Valls, G. IEEE Geoscience and Remote Sensing Magazine 2021, arxiv.org/abs/2104.05107 **"Living in the Physics - Machine Learning Interplay for Earth Observation"** Camps-Valls et al. AAAI Fall Series 2020 Symposium on Physics-guided AI for Accelerating Scientific Discovery, 2020. arxiv.org/abs/2010.09031