Machine Learning for
Earth and Climate Sciences
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Deep learning

e

Reichstein, Camps-Valls et al, Nature, 2019
Camps-Valls, Tuia, Xiang, Reichstein. Wiley & Sons book, 2021
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PERSPECTIVE

Deep learning and process understanding
for data-driven Earth system science

Markus Reichstein'?#, Gustau Camps- Valls®, Bjorn Stevens®, Martin Jung', Joachim Denzler”*, Nuno Carvalhais'® & Prabhat”

Machine learning approaches are increasingly used to extract patterns and insights from the ever-increasing stream of
geospatial data, but current approaches may not be optimal when system behaviour is dominated by spatial or temporal
context. Here, rather than amending classical machine learning, we argue that these contextual cues should be used as
part of deep learning (an approach that is able to extract spatio-temporal features automatically) to gain further process
understanding of Earth system science problems, improving the predictive ability of seasonal forecasting and modelling
of long-range spatial connections across multiple timescales, for example. The next step will be a hybrid modelling
approach, coupling physical process models with the versatility of data-driven machine learning.
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A COMPREHENSIVE APPROACH TO REMOTE SENSING,
CLIMATE SCIENCE AND GEOSCIENCES
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Some machine learning applications

One soil map
https://map.onesoil.ai
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Neural networks for spatio-temporal classification

e (onvolutional neural nets (CNN): hierarchical structure exploits spatial relations
e |ong short-term memory (LSTM): recurrent network that accounts for memory/dynamics

Input Convolution Pooling Flatten LSTM Dense / Output
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“A Deep Network Approach to Multitemporal Cloud Detection”
Tuia and Camps-Valls, IEEE IGARSS 2018, http://isp.uv.es/code/landmarks.html

1



Probabilistic and scalable classifiers

e (Gaussian processes start to be scalable ...
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e (aussian processes as an alternative to neural nets
e (iPs allow a probabilistic treatment, confidence intervals, feature ranking, deep too!

10°

86.5
10'

10° 10*
Training CPU time

“Remote Sensing Image Classification With Large-Scale Variational Gaussian Processes,”

Morales, Molina and Camps-Valls, IEEE Trans. Geosc. Rem. Sens, 2018
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Multitask learning

e Multiple inter-related outputs? Data from multiple sources?
e Learn to fuse heterogeneous information

.

v o e

“Multitask Remote Sensing Data Classification”
Leiva and Camps-Valls, [EEE Trans. Geosc, Rem. Sens 2015
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Spatio-temporal variable prediction

e STA is common place in climate informatics, neuroscience, video processing, NLP. ...
o Current approaches: CNN + LSTM, space-time Gaussian processes
o Novel approaches: distribution regression and variational deep GPs

S
P— ux(P) = P [Ep1(X),...,Eps(X)] € R Inputs
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el i > ey k : < . '. Y s
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Study Area g ) ' w . . .
I Cropland S, T i B A A Survey on Gaussian Processes for Earth Observation Data Analysis
105°0'0"W 9500 W 85°00"W Camps-Valls et al. [EEE Geoscience and Remote Sensing Magazine 2016
“Nonlinear Distribution Regression for Remote Sensing Applications” “Deep Gaussian Processes for Retrieval of bio-geo-physical parameters”, 14

Adsuara, Perez,Muiioz, Mateo, Piles, Camps-Valls, IEEE TGARS 2019 Svendsen, Ruescas and Gamps-Valls, IEEE Trans. Geosc. Rem. Sens, 2019



Google Earth Engine

Go 81@ rtn engine “ Help +  nicholas.clinton ~ [ N
Docs I B TN O ) O console Tasks | ‘ '

1’ Imports (5 entries) B »Point (13.54, 23.56) at 20Km/px

+ ee.Algorithms 2 // load the most recent MODIS composite ~Pixels
5 var modis = ee.Inage(inagecolloction VHODIS composite: Image (3 bands) o

» ee.Array 4 .sort('systen:time start’, false) »DEM: Image (2 bands) y

+ ee.Blob H Sfirst0); ~objects

» ee.Date 7 /7 print metadata to the console ~MODIS composite: Image (3 bands)

, ee.DateRange 8 print(modis)

» ee.Dictionary 10 var sld . L. Z .

: 5 remote sensing [MDPI -
» ee.ErrorMargin 12 23
» ee.Feature 13 <Channel
_ 14 <RedChannel

» ee.FeatureCollection 15 SSourcect Article

+ ee.Filter 8 . . . 4
® Multitemporal Cloud Masking in the Google ) . ‘

» ee.Geometry - 18

Earth Engine
ﬁ remote sensing ﬁw\n\w

Gonzalo Mateo-Garcia *
and Gustau Camps-Valls

Article
Global Estimation of Biophysical Variables from
Google Earth Engine Platform

Remote Sensing of Environment 218 (2018) 69-88

" Manuel Campos-Taberner '**
Gustau Camps-Valls 3@, Natt

Contents lists available at ScienceDirect

Remote Sensing of Environment

journal homepage: www.elsevier.com/locate/rse e

A methodology to derive global maps of leaf traits using remote sensing and | M)

climate data ey

Alvaro Moreno-Martinez®’, Gustau Carnps—Vallsl’, Jens Kattge®, Nathaniel Robinson®,

Markus Reichstein, Peter van Bodegom®, Koen Kramer®, J. Hans C. Cornelissen®, Peter Reich’,

Michael Bahn?, Ulo Niinemets", Josep Pefiuelas’, Joseph M. Craine, Bruno E.L. Cerabolini®,
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ML in Earth science rocks... only when some things happen!

e Strong spatial and temporal correlations

e Big data accessible

e (heap computing resources available

e Fast scalable ML models available

e No expert knowledge needed

e High prediction accuracy is enough

e Understanding the system is not that relevant

18



Machine/deep learning challenges

e Do Models respect Physics Laws? Physics-aware ML
e What did the ML model learn? Explainable Al (XAl)
e Do they get cause-effect relations? Causal discovery and inference

€he New Hork Eimes
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OP-ED CONTRIBEUTORS

Elght (NO, Nlﬂﬂ!) Can we open the black box of Al?
Probl ems Wlth Blg Dat a :::;:::tlainn;e;iienmii :: ::Serl\_::rl::re. But before scientists trust it, they first need t

By Gary Marcus and Ernest Davis Davide Castelvecchi
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Mechansim

CAM with global average p-oo]ingl‘f_l[l, lﬂ]
x A I + Grad-CAM || generalizes CAM, utilizing gradient
+ Guided Grad-CAM and Feature Occlusion @]
+ Respond CAM [43
+ Multi-layer CAM [91]
LRP (Layer-wise Relevance Propagation) E},
— — — + Image classifications. PASCAL VOC 2009 etc :ﬂl
+ Audio classification. AudioMNIST ml
+ LRP on DeepLight. fMRI data from Human Connectome Project
+ LRP on CNN and on BoWibag of words)/SWM

+ LRP on compressed domain action recognition algorithm
+ LRP on video deep learning, selective relevance method

+ BILRP
DeepLI
Prediction Difference Analysis
Slot Activation Vemorsﬁ
PRM (Peak Response Mapping)

" LIME (Local Interpretable Model-agnostic Explanations) e
+ MUSE with LIME
+ Guidelinebased Additive eX
# Also listed elsewhere:

Others. Also listed elsewhere:

N
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Decomposition

. - . - Sensitivit
planation optimizes complexity, similar to LIME Y

68). (70)
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+ Direct output labels. Training NN via multiple instance learning Others
+ Image corruption and testing Region of Interest statistically i
+ Attention map with autofocus convolutional layer m

DeconvNet @

Inverting representation with natural image prior Inversion

Inversion using CNN |

“A Survey on Explainable Artificial Guided backpropagation |74].
i . : " Activation maximization/optimization
Intelllgence(XAI) towards Medical + Activation maximization on DBN (Deep Belief Network)
XAl’,, T][la 2019 + Activation maximization, multifaceted feature visualization Optimization

Visualization via regularized optimization

“Advancing Deep Learning For Earth Semantic dictionary (3§]
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Sciences: From Hybrid Modeling To Decision trees N N
Crer g Propositional logic, rule-based
Interpretability”, Camps-Valls, G. and Sparse decision list
Reichstein, M. and Zhu, Z. and Tuia, D. Decision sets. rule sets [83). 34 Verbal
Encoder-generator framework |
IEEE IGARSS (2020) Filter Attribute Probability Density Function
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Physics-aware ML

PERSPECTIVE

Deep learning and process understanding
for data-driven Earth system science

Markus Reichstein'?*, Gustau Camps-Valls®, Bjorn Stevens*, Martin Jung?, Joachim Denzler?®, Nuno Carvalhais"® & Prabhat’

https://doi.org/10.1038/541586-019-0912-1

learning app: arci ingly used to extract patterns and insights from the ever-increasing stream of
geospatial data, but current approaches may not be optimal when system behaviour is dominated by spatial or temporal
context. Here, rather than amending classical machine leammg, we a:gue that these contextual cues should be used as
part of deep learning (an appmach that is able to extract spatif ically) to gain further process
understanding of Earth system science problems, improving the pledlctlve ability of seasonal forecasting and modelling
of long- range spatlal connecnons across multiple timescales, for example. The next step will be a hybrid modelling
1s with the versatility of data-driven machine learning.
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“Deep learning and process understanding for data-driven Earth System Science”, Reichstein, Camps-Valls et al. Nature, 2019.

“Living in the Physics - Machine Learning Interplay for Earth Observation” 22

Camps-Valls et al. AAAI Fall Series 2020 Symposium on Physics-guided Al for Accelerating Scientific Discovery, 2020. arxiv.org/abs/2010.09031



Causalit
a Granger causality b Nonlinear state-space methods
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Inferring causation from time series in Earth system ) .
sciences (X, X(t-d), X(t-2d)) (YO, Y(t-d), Y(t-2d))
Jakob Runge® 2, Sebastian Bathiany>#, Erik Bollt5, Gustau Camps-Valls®, . .
Dim Coumou”, Ethan Deyle?, Clark Glymour'®, Marlene Kretschmer?, C Causal network learning algorithms d Structural causal models
Miguel D. Mahecha® "', Jordi Mufioz-Mari®, Egbert H. van Nes?, Jonas Peters'?, . . . . . .
Rick Quax'3™, Markus Reichstein™, Marten Scheffer4, Bernhard Schslkopf's, Skeleton discovery phase Orientation phase Linear Non-Gaussian Additive Model
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Adridn Pérez—SuayQ, Member, IEEE, and Gustau Camps—\lallso, Feliow, IEEE Z ' ‘_». . . . ._»' Y[
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and the complex. interactions between the governing processcs, Machine lcaming and signal processing play a crucial role in

“Inferring causation from time series with perspectives in Earth system sciences”, Runge, Bathiany, Bollt, Camps-Valls, et al. Nat Comm., 2019
“Gausal Inference in Geoscience and Remote Sensing from Observational Data,” Pérez-Suay and Camps-Valls, IEEE Trans. Geosc. Rem. Sens, 2018 23
“CauseMe: An online system for henchmarking causal inference methods,” Murioz-Mari, Mateo, Runge, Camps-Valls. In preparation (2019). CauseMe: http://causeme.uv.es
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ELLIS.eu

o ELLIS: European Laboratory for Learning and Intelligent Systems
e [Distributed center of excellence in Al

e ELLIS goals and mandates:
- Coordinates research, fosters collaborations with industry and users, promotes technology
adoption, support PhD fellowships & postdoc visits/stays, organize focused workshops

o ELLIS legacy:
— place Europe in the global map of top Al research and transfer to industry
- Make Europe an international talent magnet, incubator of innovation, and ecosystem

o [argely multidisciplinary & organized in Research Programs:
— Robotics, robustness, health, language processing, earth, etc.

https://ellis.eu 25
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e ELLIS is Largely multidisciplinary & organized in Research Programs:
— Robotics, robustness, health, language processing, etc.
e “Machine learning for Earth and climate sciences” (Dir.: Gustau Camps & Markus Reichstein)
- Goal: Model & understand the Earth with Machine Learning and Process Understanding
 Spatio-temporal anomaly and extreme events detection, anticipation and attribution
 Data-driven dynamic modelling and forecasting
Hybrid modeling: linking physics and machine learning models
» (Causal inference, Learning and explaining feature representations
« FEarth and Climate model emulation, generative modelling and data-model fusion
— 20 ELLIS Fellow members, regular meetings/workshops, exchange students, teaching material
e Universitat de Valencia is a core center in the ICT-48 project ELISE

https://www.elise-ai.eu/ 2



AIDA - Al Doctoral Academy ? A| DA

<5 ARTIFICIAL INTELLIGENCE
DOCTORAL ACADEMY

o Al ICT-48 networks (Al4Media, ELISE, HumanE-Al NET, TAILOR) + VISION consortium joined forces
o New joint instrument to support world-level Al education and research programme

° AIDA offers:
access to resources, knowledge & expertise for the latest developments and trends on Al
research and innovation
— operate as an umbrella organisation for Al PhD and Postdoc studies
— support a new generation of alumni
— enhance networking and collaboration among talented researchers
— provide access to workshops/conferences, short courses, mobilities, training/job opportunities

https://www.i-aida.org/ ”






Take-home message

* Alis a paradigm shift
- Excel in classification, (change) detection, parameter retrieval
- Automate & understand processes

* Challenges: interpretability + causal relations + physics consistency

* Future:
— User-centric Al + trustworthiness + accountability
- Holistic & interdisciplinary education

“Towards a Collective Agenda on Al for Earth Science Data Analysis”
Tuia, Roscher, Wegner, Jacobs, Zhu, and Camps-Valls, G. IEEE Geoscience and Remote Sensing Magazine 2021, arxiv.org/abs/2104.05107

“Living in the Physics - Machine Learning Interplay for Earth Observation”
Camps-Valls et al. AAAI Fall Series 2020 Symposium on Physics-guided Al for Accelerating Scientific Discovery, 2020. arxiv.org/abs/2010.09031
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